Optimal Solutions for R1 and R2 problems
Problem |
NV |
Distance |
Authors |
Problem |
NV |
Distance |
Authors |
R101.25 |
8 |
617.1 |
KDMSS |
R201.25 |
4 |
463.3 |
CR+KLM |
R101.50 |
12 |
1044.0 |
KDMSS |
R201.50 |
6 |
791.9 |
CR+KLM |
R101.100 |
20 |
1637.7 |
KDMSS |
R201.100 |
8 |
1143.2 |
KLM |
R102.25 |
7 |
547.1 |
KDMSS |
R202.25 |
4 |
410.5 |
CR+KLM |
R102.50 |
11 |
909 |
KDMSS |
R202.50 |
5 |
698.5 |
CR+KLM |
R102.100 |
18 |
1466.6 |
KDMSS |
R202.100 |
|
|
|
R103.25 |
5 |
454.6 |
KDMSS |
R203.25 |
3 |
391.4 |
CR+KLM |
R103.50 |
9 |
772.9 |
KDMSS |
R203.50 |
5 |
605.3 |
IV+C |
R103.100 |
14 |
1208.7 |
CR+L |
R203.100 |
|
|
|
R104.25 |
4 |
416.9 |
KDMSS |
R204.25 |
2 |
355.0 |
IV+C |
R104.50 |
6 |
625.4 |
KDMSS |
R204.50 |
2 |
506.4 |
IV |
R104.100 |
11 |
971.5 |
IV |
R204.100 |
|
|
|
R105.25 |
6 |
530.5 |
KDMSS |
R205.25 |
3 |
393.0 |
CR+KLM |
R105.50 |
9 |
899.3 |
KDMSS |
R205.50 |
4 |
690.1 |
IV+C |
R105.100 |
15 |
1355.3 |
KDMSS |
R205.100 |
|
|
|
R106.25 |
3 |
465.4 |
KDMSS |
R206.25 |
3 |
374.4 |
CR+KLM |
R106.50 |
5 |
793 |
KDMSS |
R206.50 |
4 |
632.4 |
IV+C |
R106.100 |
13 |
1234.6 |
CR+KLM |
R206.100 |
|
|
|
R107.25 |
4 |
424.3 |
KDMSS |
R207.25 |
3 |
361.6 |
KLM |
R107.50 |
7 |
711.1 |
KDMSS |
R207.50 |
|
|
|
R107.100 |
11 |
1064.6 |
CR+KLM |
R207.100 |
|
|
|
R108.25 |
4 |
397.3 |
KDMSS |
R208.25 |
1 |
328.2 |
IV+C |
R108.50 |
6 |
617.7 |
CR+KLM |
R208.50 |
|
|
|
R108.100 |
|
|
|
R208.100 |
|
|
|
R109.25 |
5 |
441.3 |
KDMSS |
R209.25 |
2 |
370.7 |
KLM |
R109.50 |
8 |
786.8 |
KDMSS |
R209.50 |
4 |
600.6 |
IV+C |
R109.100 |
13 |
1146.9 |
CR+KLM |
R209.100 |
|
|
|
R110.25 |
4 |
444.1 |
KDMSS |
R210.25 |
3 |
404.6 |
CR+KLM |
R110.50 |
7 |
697.0 |
KDMSS |
R210.50 |
4 |
645.6 |
IV+C |
R110.100 |
12 |
1068 |
CR+KLM |
R210.100 |
|
|
|
R111.25 |
5 |
428.8 |
KDMSS |
R211.25 |
2 |
350.9 |
KLM |
R111.50 |
7 |
707.2 |
CR+KLM |
R211.50 |
3 |
535.5 |
IV+DLP |
R111.100 |
12 |
1048.7 |
CR+KLM |
R211.100 |
|
|
|
R112.25 |
4 |
393 |
KDMSS |
|
|
|
|
R112.50 |
6 |
630.2 |
CR+KLM |
|
|
|
|
R112.100 |
|
|
|
|
|
|
|
Legend:
C - A. Chabrier, “Vehicle Routing Problem with Elementary Shortest Path based Column Generation.” Forthcoming in: Computers and Operations Research (2005).
CR - W. Cook and J. L. Rich, "A parallel cutting plane
algorithm for the vehicle routing problem with time windows," Working
Paper, Computational and Applied Mathematics, Rice University, Houston, TX,
1999.
DLP - E. Danna and C. Le Pape,
“Accelerating branch-and-price with local search: A case study on the vehicle
routing problem with time windows,” In: Column
Generation, G. Desaulniers,
J. Desrosiers, and M. M. Solomon (eds.), 99-130, Kluwer Academic Publishers (2005).
IV
- S.
Irnich and D. Villeneuve,
“The shortest path problem with k-cycle elimination (k ≥ 3): Improving a
branch-and-price algorithm for the VRPTW.” Forthcoming in: INFORMS
Journal of Computing (2005).
KDMSS - N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis, "2-Path Cuts for the Vehicle Routing Problem with Time Windows," Transportation Science, Vol. 33 (1), 101-116 (1999).
KLM - B. Kallehauge, J. Larsen, and
O.B.G. Madsen. "Lagrangean duality and non-differentiable optimization
applied on routing with time windows - experimental results."
Internal report IMM-REP-2000-8, Department of Mathematical Modelling,
Technical University of Denmark,
L - J. Larsen. "Parallelization
of the vehicle routing problem with time windows." Ph.D. Thesis IMM-PHD-1999-62, Department of Mathematical Modelling,